考虑区域特征的跨区域电力系统空间复杂网络模型构建*
CSTR:
作者单位:

大连理工大学

中图分类号:

N94

基金项目:

国家自然科学基金资助项目(71371039; 71871039)


A Spatial Complex Networks Model of Power System Considering Regional Characteristics
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为对区域电力网络脆弱性分析等相关研究以及不同区域电力网络采取相对应的保护措施提供支持,基于对电力系统的区域特征分析,考虑电力设施的供给能力和空间位置、电力设施密度与区域人口密度的分布关系等因素,提出一种基于复杂网络的电力空间网络模型(MProposed)构建方法,可为制订和实施具有区域针对性的保护措施提供相应支持。以华中地区某城市电力系统为对象,采用MProposed方法进行局域和全局区域的网络构建,运用仿真分析与已有的基于实际数据的方法和基于随机生成的方法及其改进算法进行系统结构比较,结果验证了MProposed方法的有效性和区域适应性。

    Abstract:

    In order to provide support for related research such as the vulnerability analysis of regional power networks, and the corresponding protection measures taken for power networks in different regional, considering the regional characteristics of the power system, and considering factors such as power capacity and spatial location of power facilities, distribution relationship of power facility density and density of regional population, this paper proposes a method of constructing a power spaced network model based on a complex network, which is called MProposed method, it can provide corresponding support for the formulation and implementation of regionally targeted protection measures. Taking the power system of a city in central China as the object, the paper constructs local and global networks by using the MProposed method, compares the system structure with the existing methods which include the method based on actual data, the method based on random generation and their improved algorithms by simulation analysis, finally, the results verify the effectiveness and regional adaptability of the MProposed method.

    参考文献
    [1] Robert T. Marsh. The President''s Commission on Critical Infrastructure Protection, Critical Foundations: Protecting America''s Infrastructures[R/OL].http://www. Fas. Orffsgl//library/pecip. Pdf, 2005. 10.
    [2] Ouyang Min. Review on modeling and simulation of interdependent critical infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121:43-60.
    [3] 刘晓, 张隆飙, Zhang等. 关键基础设施及其安全管理[J]. 管理科学学报, 2009, 12(6):107-115. (Liu Xiao, Zhang Longbiao, Zhang WJ, et al. Critical infrastructure and its safety management[J] Journal of Management Sciences in China, 2009, 12(6):107-115.)
    [4] Adachi T, Ellingwood B R. Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability [J]. Reliability Engineering and System Safety, 2008, 93(1): 78-88.
    [5] Vleuten E V D, Lagendijk V. Transnational infrastructure vulnerability: The historical shaping of the 2006 European “Blackout” [J]. Energy Policy, 2010, 38(4):2042-2052. Lukasik S J. Vulnerabilities and Failures of Complex Systems[J]. International Journal of Engineering Education, 2003, 19(1):206-212.
    [6] Perrow C. The next catastrophe: reducing our vulnerabilities to natural, industrial, and terrorist disasters [M]. Princeton University Press, 2011.
    [7] Kroger W. Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools [J]. Reliability Engineering & System Safety, 2008, 93(12):1781-1787.
    [8] Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, 2001, 21(6):11–25.
    [9] 李军,李向阳,张佰尚.自然异动下关键基础设施网络风险研究[J].中国管理科学, 2014, 22(09):66-73. (Li Jun, Li Xiang-yang Zhang Wu-bai. Study on Critical Infrastructure Network Risk with Natural Disaster[J]. Chinese Journal of Management Scinece, 2014, 22(09):66-73)
    [10] Zhou F, Yuan Y, Zhang M. Robustness Analysis of Interdependent Urban Critical Infrastructure Networks Against Cascade Failures[J]. Arabian Journal for Science and Engineering, 2019:1-15.
    [11] 王淑良, 岳昕. 关联基础设施系统脆弱性分析[J]. 计算机应用研究, 2014, 31(04):22-26+42. (Wang Shuliang, Yue Xin. Vulnerability analysis of interdependent infrastructure systems[J]. Application Research of Computers, 2014, 31(04):22-26+42.)
    [12] Buldyrev S V , Parshani R , Paul G , et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010:1025-1028.
    [13] Milanovic J V , Zhu W. Modelling of Interconnected Critical Infrastructure Systems Using Complex Network Theory[J]. IEEE Transactions on Smart Grid, 2017, 9(5):4637-4648.
    [14] James R T, Damon F, Burhan N, et al. Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure[J]. International Journal of Critical Infrastructure Protection, 2019, 24:144-165
    [15] Genge B, Kiss I, Haller P. A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures[J]. International Journal of Critical Infrastructure Protection, 2015, 10:3-17.
    [16] Xu W, Wang Z, Hong L, et al. The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input–output model[J]. International Journal of Systems Science, 2015, 46(7):1299-1306.
    [17] Omidvar B, Hojjati Malekshah M, Omidvar H. Failure risk assessment of interdependent infrastructures against earthquake, a Petri net approach: case study—power and water distribution networks[J]. Natural Hazards, 2014, 71(3):1971-1993.
    [18] Ouyang, Min. Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks[J]. Reliability Engineering & System Safety, 2016:S0951832016300515.]
    [19] Eusgeld I, Nan C, Dietz S. “System-of-systems” approach for interdependent critical infrastructures[J]. Reliability Engineering & System Safety, 2011, 96(6):679-686.
    [20] Wang S , Stanley H E , Gao Y . A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks[J]. Chaos, Solitons & Fractals, 2018, 117:21-29.
    [21] Chen Z, Nan L, Dongping F. Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model [J]. International Journal of Critical Infrastructure Protection, 2018, 22:100-112.
    [22] Poljanek K, Bono F, Eugenio Gutiérrez. Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(1):61-79.
    [23] Rafael E, Sara L, Andres R. A Complex-Network Approach to the Generation of Synthetic Power Transmission Networks[J]. IEEE Systems Journal, 2018:1-4.
    [24] Fu G, Wilkinson S, Dawson R J. A Spatial Network Model for Civil Infrastructure System Development[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(9):661-680.
    [25] Michael J. Self-organization and topology control of infrastructure sensor networks[D]. University of Maryland, College Park, 2005.
    [26] Xu X J, Zhang X, Mendes J F F. Impacts of preference and geography on epidemic spreading[J]. Physical Review E, 2007, 76(5):056109.
    [27] 张超, 孔静静. 关联基础设施系统相互作用模型与脆弱性分析[J]. 系统管理学报, 2016, 25(5):922-929. (Zhang Chao, Kong Jingjing. Interaction model and vulnerability Analysis of interdependent infrastructure systems[J]. Journal of Systems & Management, 2016, 25(5):922-929.)
    [28] Mooney E L, Almoghathawi Y, Barker K. Facility Location for Recovering Systems of Interdependent Networks[J]. IEEE Systems Journal, 2019, 13(1):489-499.
    [29] Ouyang M, Hong L, Mao Z J, et al. A methodological approach to analyze vulnerability of interdependent infrastructures[J]. Simulation Modelling Practice & Theory, 2009, 17(5):817-828.
    [30] Almoghathawi Y, Barker K, Albert LA. Resilience-driven restoration model for interdependent infrastructure networks[J]. Reliability Engineering & System Safety, 2019, 185:12-23.
    [31] 丁道齐. 用复杂网络理论分析电网连锁性大停电事故机理[J]中国电力, 2007, 11(40): 25-32. (Ding Daoqi. Applying complex network theory to analyze mechanism of cascading large blackouts failure[J] Electric power, 2007, 11(40): 25-32.)
    [32] Dunn S , Wilkinson S , Ford A . Spatial structure and evolution of infrastructure networks[J]. Sustainable Cities and Society, 2016, 27:23-31
    [33] Um J, Son S W, Lee S I, et al. Scaling laws between population and facility densities[J]. Proceedings of the National Academy of Sciences, 2009, 106(34):14236-14240.
    [34] Gaihua F,Sean W,Richard J D. A spatial network model for civil infrastructure system development[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31:661-680
    [35] Yanlu Zhang, Naiding Yang, Upmanu Lall. Modeling and simulation of the vulnerability of interdependent power-water infrastructure networks to cascading failures[J]. Journal of Systems Science and Systems Engineering, 2016, 25(1):102-118
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金成浩,荣莉莉.考虑区域特征的跨区域电力系统空间复杂网络模型构建*[J].,2021,(20).

复制
分享
文章指标
  • 点击次数:217
  • 下载次数: 66
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-02-09
  • 最后修改日期:2021-10-19
  • 录用日期:2021-04-19
  • 在线发布日期: 2021-11-05
文章二维码

联系电话:020-37635126(一、三、五)/83568469(二、四)(查稿)、37674300/82648174(编校)、37635521/82640284(财务)、83549092(传真)

联系地址:广东省广州市先烈中路100号大院60栋3楼302室(510070) 广东省广州市越秀区东风西路207-213星河亚洲金融中心A座8楼(510033)

邮箱:kjgl83568469@126.com kjgl@chinajournal.net.cn

科技管理研究 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!
关闭
关闭