[关键词]
[摘要]
摘要:人工智能时代,企业如何捕捉发展机遇将人工智能技术优势转化成价值优势,实现“弯道超车”和价值创造正成为企业发展与价值创造研究的焦点。本文基于知识基础观视角,采用多案例研究方法,选取三家不同行业的人工智能技术应用型企业作为案例,探索面临创新技术变革的外部环境,企业如何实现价值创造等相关问题。研究发现:(1)企业应用人工智能技术实现价值创造包含认知迁移和双元能力塑造两个维度,企业通过认知横向与纵向迁移,应用式与内生式能力塑造实现价值创造;(2)企业价值创造可分为慢变型、先锋型和成长型三类路径模式,不同企业间价值创造模式与机制存在异质性;(3)企业通过内外部合法性地位的获得实现人工智能技术在企业内的稳定发展与扩散。本文研究结论对于揭示人工智能技术实现价值创造的内在逻辑和企业技术应用决策有着重要理论和实践意义。
[Key word]
[Abstract]
Abstract: In the era of artificial intelligence, how enterprises capture the development opportunities to transform the technological advantages of artificial intelligence into value advantages, to achieve "overtaking on the curve" and value creation is becoming the focus of enterprise development and value creation research. Based on the perspective of knowledge-based view, this paper adopts the multi-case study method and selects three ai application-oriented enterprises in different industries as cases to explore the external environment facing innovative technological change and how enterprises achieve value creation. The results show that :(1) the application of ai technology to value creation in enterprises includes two dimensions: cognitive transfer and dual capability shaping. Enterprises achieve value creation through horizontal and vertical cognitive transfer, and application and endogenous capability shaping. (2) Enterprise value creation can be divided into three types of path models: slow change, pioneer and growth, and there is heterogeneity in value creation modes and mechanisms among different enterprises. (3) Enterprises realize the steady development and diffusion of ARTIFICIAL intelligence technology in enterprises by obtaining internal and external legitimacy status. The research conclusion of this paper has important theoretical and practical significance for revealing the internal logic of artificial intelligence technology to achieve value creation and enterprise technology application decision.
[中图分类号]
[基金项目]
国家社会科学基金重点项目“人工智能对劳动力市场的冲击及劳动者知识技能转换应对研究”( 项目编 号: 19AGL025) ; 北京市社会科学基金重大项目“动态匹配视角下人工智能对北京市就业的影响与应对研究”( 项目编号: 18ZDA09)