Abstract:Based on the analysis of the earned value and the risk management, the project data is acquired through the Monte Carlo simulation, and the model learning and the completion prediction by using the quadratic discriminant analysis, the random forest and the support vector machine are one of the effective methods of the project control. On the basis of existing research, this paper takes into account the residual working time, the remaining work cost and the risk in the execution of the project, and applies the existing research methods, the gradient lifting tree and the artificial neural network to study the model, and makes model selection and model evaluation by using the nested cross validation. The results show that the optimized method can improve the accuracy of project completion prediction.