碳约束下省域物流能源效率空间关联效应及其影响因素
CSTR:
作者:
作者单位:

1.北京交通大学经济管理学院;2.西南交通大学经济管理学院

基金项目:

国家社会科学基金资助项目“国家复杂产品生产能力比较研究”(15AZD057)


The Spatial Correlation Effect and Influencing Factors of Provincial Logistics Energy Efficiency under Carbon Constraint
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    关注区域间物流能源效率空间关系,以我国30个省份为对象,从全要素角度考虑碳约束下物流能源效率,将物流碳排放与物流资本、能耗和劳动力联系起来,利用其2005-2019年的面板数据,采用Super-SBM模型测算其能源效率;并从整体空间关联角度出发,运用社会网络分析方法分析其能源效率的时空关联演变特征,构建二次指派程序模型实证探索其影响因素。结果表明:30个省份物流能源效率整体网络结构基本稳定,省域之间已形成了良好的可达性,2005-2019年间物流能源网络效率均在0.648~0.717之间浮动,网络层级从2005年的0.475下降到2019年的0.437;北京、上海、江苏、天津及浙江处于网络的中心并起着主导性作用;整体空间网络可划分为双向溢出、净受益、净溢出和经纪人四大功能板块,其中大部分地处偏远地区的省份均担任着净溢出的角色;经济发展、城镇化率、科研发展投入以及环境建设投资与物流能源效率空间关联呈正相关,而产业结构对空间关联影响不大。基于研究结论,提出大力发展低碳经济、发挥发达地区的资本和技术辐射作用和加强区域间物流能效协同管理等政策建议。

    Abstract:

    Focusing on the spatial relationship between regional logistics energy efficiency, this paper takes 30 provinces as the object, considers the logistics energy efficiency under the carbon constraint from the perspective of total factors, links logistics carbon emissions with logistics capital, energy consumption and labor, and uses the panel data from 2005 to 2019 to measure the energy efficiency using the Super-SBM model. From the perspective of global spatial correlation, social network analysis was used to analyze the spatio-temporal correlation evolution characteristics of energy efficiency, and a secondary assignment program model was constructed to empirically explore its influencing factors. The results show that the overall structure of logistics energy efficiency network in 30 provinces is basically stable, and good accessibility has been formed among provinces. From 2005 to 2019, the logistics energy efficiency network fluctuates between 0.648 and 0.717, and the network level decreases from 0.475 in 2005 to 0.437 in 2019. Beijing, Shanghai, Jiangsu, Tianjin and Zhejiang are in the center of the network and play a leading role. The overall spatial network can be divided into four functional areas: two-way spillover block, net benefits block, net spillovers block and brokers block. Most of the provinces located in remote areas play the role of net spillovers block. Economic development, urbanization rate, investment in scientific research and environmental construction are positively correlated with the spatial correlation of logistics energy efficiency, while the industrial structure has little effect on the spatial correlation. Based on the research conclusions, the paper puts forward some policy suggestions, such as vigorously developing low-carbon economy, giving full play to the radiating role of capital and technology in developed regions, and strengthening the coordinated management of logistics energy efficiency between regions.

    参考文献
    [1] Deng F, Xu L, Fang Y, et al. PCA-DEA-tobit regression assessment with carbon emission constraints of China''s logistics industry[J]. JOURNAL OF CLEANER PRODUCTION, 2020,271.
    [2] Xiao F, Hu Z, Wang K, et al. Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics[J]. SUSTAINABILITY, 2015,7(7):9140-9159.
    [3] 刘承良, 管明明. 低碳约束下中国物流业效率的空间演化及影响因素[J]. 地理科学, 2017,37(12):1805-1814.
    [4] Zaim O, Taskin F. Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2000,58(2):95-107.
    [5] 陈星星. 绿色全要素能源效率的空间溢出效应测度[J]. 统计与决策, 2019,35(21):118-121.
    [6] 商传磊, 张悟移, 陈俊营. 基于DEA和Malmquist指数的中国物流业全要素能源效率评价[J]. 生态经济, 2019,35(03):51-56.
    [7] 李健, 刘恋. 省际物流业绿色全要素生产率时空差异及空间收敛性研究[J]. 长江流域资源与环境, 2020,29(04):799-812.
    [8] 杨恺钧, 毛博伟, 胡菡. 长江经济带物流业全要素能源效率——基于包含碳排放的SBM与GML指数模型[J]. 北京理工大学学报(社会科学版), 2016,18(06):54-62.
    [9] 王兆峰, 杜瑶瑶. 基于SBM-DEA模型湖南省碳排放效率时空差异及影响因素分析[J]. 地理科学, 2019,39(05):797-806.
    [10] 王燕, 刘婷. 碳排放约束下我国区域物流能源效率及影响因素研究[J]. 生态经济, 2018,34(10):14-18.
    [11] Fan X, Zhi-Hua H, Ke-Xin W, et al. Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics[J]. Sustainability, 2015,7(7).
    [12] Ma F, Wang Y, Yuen K F, et al. The Evolution of the Spatial Association Effect of Carbon Emissions in Transportation: A Social Network Perspective[J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019,16(12).
    [13] 臧新, 陆俊杰. 我国物流业能源效率的地区差异及影响因素——基于DEA-BCC模型的实证研究[J]. 北京交通大学学报(社会科学版), 2018,17(03):101-111.
    [14] 张立国, 李东, 龚爱清. 中国物流业全要素能源效率动态变动及区域差异分析[J]. 资源科学, 2015,37(04):754-763.
    [15] 曹炳汝, 孔泽云, 邓莉娟. 长江经济带省域物流效率及时空演化研究[J]. 地理科学, 2019,39(12):1841-1848.
    [16] Tone K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002,143(1):32-41.
    [17] 刘华军, 刘传明, 孙亚男. 中国能源消费的空间关联网络结构特征及其效应研究[J]. 中国工业经济, 2015(05):83-95.
    [18] Bai C, Zhou L, Xia M, et al. Analysis of the spatial association network structure of China''s transportation carbon emissions and its driving factors[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020,253.
    [19] Scott A B, Harrison C W. Social Structure from Multiple Networks. II. Role Structures[J]. Scott A. Boorman;Harrison C. White, 1976,81(6).
    [20] 张瑞, 胡彦勇, 郄晓彤. 中国物流业能源生态效率与其影响因素的动态响应研究[J]. 经济问题, 2021(08):9-17.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄超然,周国华.碳约束下省域物流能源效率空间关联效应及其影响因素[J].,2022,(16).

复制
分享
文章指标
  • 点击次数:188
  • 下载次数: 49
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-02-10
  • 最后修改日期:2022-12-29
  • 录用日期:2022-03-23
  • 在线发布日期: 2023-01-16
文章二维码

联系电话:020-37635126(一、三、五)/83568469(二、四)(查稿)、37674300/82648174(编校)、37635521/82640284(财务)、83549092(传真)

联系地址:广东省广州市先烈中路100号大院60栋3楼302室(510070) 广东省广州市越秀区东风西路207-213星河亚洲金融中心A座8楼(510033)

邮箱:kjgl83568469@126.com kjgl@chinajournal.net.cn

科技管理研究 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!
关闭
关闭