广东省科技创新资源配置时空变异测度
DOI:
CSTR:
作者:
作者单位:

广东省技术经济研究发展中心

作者简介:

通讯作者:

中图分类号:

G322.7

基金项目:

广东省软科学研究项目“粤港澳大湾区高校科技创新资源统计与调查研究”(2019A101002026)


Measuring the Spatial and Temporal Divergence of Regional Science and Technology Innovation Resource in Guangdong
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为摸清“十二五”“十三五”期间广东创新资源在时间和空间上分配的变异特征和规律,采用DEA-Malmquist模型、空间可视化方法,从静态和动态两个视角测度和剖析2011-2020年广东科技创新资源配置在时间和空间上的变异情况。结果发现:以2014年实施创新体制机制改革为关键转折点,广东省科技创新资源配置效率呈现先降后升的态势,随着创新资源的加大投入和利用效率提升,全省已发展为珠三角领衔、粤东西部协同发展的“一核两翼”创新发展格局;动态来看,广东省科技创新资源配置效率不断提升,年平均涨幅为8.1%,技术进步是主要影响因素,科技创新资源配置效率综合提高型地市有13个,其中云浮和汕头表现突出,技术进步提高型包括广州、深圳、清远和茂名;综合下降型包括汕头、江门、湛江和揭阳。由此提出广东省进一步完善科技投入机制和科学统筹区域创新资源配置的建议。

    Abstract:

    In order to grasp the characteristics and patterns of changes in the allocation of Guangdong's innovation resources in time and space during the 12th and 13th Five-Year Plan period, this paper applied the DEA-Malmquist model and spatial visualization methods to investigate the temporal and spatial changes in the allocation of Guangdong's science and technology innovation resources from 2011-2020 in both static and dynamic perspectives. The results show that with the implementation of innovation system reform in 2014 as the key turning point, the allocation efficiency of science and technology innovation resources in Guangdong Province showed a trend of first decline and then rise. With the increased investment and efficiency of innovation resources, the province has developed into a "one core and two wings" innovation development pattern, with the Pearl River Delta Region leading the way and the east and west of Guangdong developing synchronously. From a dynamic point of view, during the 12th "Five-Year Plan" and 13th "Five-Year Plan" period, the allocation efficiency of scientific and technological innovation resources in Guangdong province has been continuously improved, with an average annual increase of 8.1%, which is mainly driven by technological improvements. There are 13 cities that are comprehensive and efficient in allocating science and technology innovation resources, among which Yunfu and Shantou are outstanding. Guangzhou, Shenzhen, Qingyuan and Maoming are technology advancement improvement type. Shantou, Jiangmen, Zhanjiang and Jieyang are combined declining type. Based on the above analysis, the article puts forward suggestions for further improving the science and technology investment mechanism and scientifically coordinating the allocation of regional innovation resources in Guangdong Province.

    参考文献
    相似文献
    引证文献
引用本文

张祥宇.广东省科技创新资源配置时空变异测度[J].,2022,(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-10
  • 最后修改日期:2022-06-23
  • 录用日期:2022-04-24
  • 在线发布日期: 2022-07-01
  • 出版日期:
文章二维码

联系电话:020-37635126(一、三、五)/83568469(二、四)(查稿)、37674300/82648174(编校)、37635521/82640284(财务)、83549092(传真)

联系地址:广东省广州市先烈中路100号大院60栋3楼302室(510070) 广东省广州市越秀区东风西路207-213星河亚洲金融中心A座8楼(510033)

邮箱:kjgl83568469@126.com kjgl@chinajournal.net.cn

科技管理研究 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
关闭
关闭