基于互联网传播文本的地区环境形象评价方法
CSTR:
作者:
作者单位:

1.北京大学环境科学与工程学院;2.北京大学国家发展研究院;3.生态环境部环境规划院

中图分类号:

X321

基金项目:

生态环境部环境规划院课题项目、“城市环境规划管理”、2020A049

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用文本分类、情感分析等自然语言处理手段,开发基于互联网文本信息的地区环境形象评价方法。为满足生态环境大数据的分析需求,划分了环境形象类别,分别从文体来源、情感极性和环境要素这三种角度评价地区环境形象。人工标注环境文本语料,对比支持向量机、朴素贝叶斯和卷积神经网络三种算法,最终构建了以卷积神经网络为核心算法的地区环境形象评价模型。方法的分类效果较好,三种分类的F1值均满足分析需求,环境要素的F1值在0.8~0.9之间,情感分析的F1值在0.8以上,文体来源的F1值在0.9左右。该方法应用在长三角城市,可实时处理地区热点环境舆情,分析地区环境形象,提供精准直观的环境形象评估结果,为区域环境管理提供基础信息支持。

    Abstract:

    Using natural language processing methods such as text classification and sentiment analysis, this article develops a regional environmental image evaluation method based on Internet news. In order to meet the analysis needs of big data on ecological environment, the category of environmental image is divided. Regional environmental images are divided into three categories, including news sources, environmental elements, and emotional attitudes. This research constructs an environment-specific corpus and compares three algorithms, including support vector machines, naive Bayes, and convolutional neural networks and finally build a regional environmental image evaluation method with convolutional neural network. The F1 values of the three classifications all meet the analysis needs. The F1 value of environmental elements is between 0.8 and 0.9, the F1 value of sentiment analysis is above 0.8, and the F1 value of stylistic sources is about 0.9. The method is well applied to cities in the Yangtze River Delta region. It can process regional environmental public opinion in real time, analyze the environmental image of the region, and provide intuitive conclusions and basic information support for regional environmental management.

    参考文献
    [1] Arts K, van der Wal R, Adams W M. Digital technology and the conservation of nature [J]. Ambio, 2015, 44(4): 661-673.
    [2] Ilieva R T, McPhearson T. Social-media data for urban sustainability [J]. Nature Sustainability, 2018, 1(10): 553-565.
    [3] 邓新云. 我国网络媒体对环境新闻的议题建构 [D]. 广西大学, 2014.
    [4] 孙楠. 人民网环境新闻报道框架研究 [D]. 东北师范大学, 2015.
    [5] 杨逐原. 环境新闻与区域形象的塑造和提升研究 [J]. 新闻论坛, 2016, (05): 72-76.
    [6] 谈婷婷. 环境新闻报道对甘肃环境形象的建构研究 [D]. 兰州大学, 2019.
    [7] 武鹏. 环境新闻中的政府形象研究 [D]. 暨南大学, 2013.
    [8] 罗小玲. 《纽约时报》对华环境形象建构研究(2000-2012) [D]. 暨南大学, 2013.
    [9] Sun S, Luo C, Chen J. A review of natural language processing techniques for opinion mining systems [J]. Information Fusion, 2017, 36: 10-25.
    [10] Song M, Du Q, Zhu Q. A theoretical method of environmental performance evaluation in the context of big data [J]. Production Planning Control, 2017, 28(11-12): 976-984.
    [11] Dubey R, Gunasekaran A, Childe S J, et al. The impact of big data on world-class sustainable manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(1): 631-645.
    [12] Haslam P A. Bigger Data and Quantitative Methods in the Study of Socio-Environmental Conflicts [J]. Sustainability, 2020, 12(18): 7673.
    [13] Cha Y, Stow C A. Mining web-based data to assess public response to environmental events [J]. Environmental Pollution, 2015, 198: 97-99.
    [14] Lu Y, Wang Y, Zuo J, et al. Characteristics of public concern on haze in China and its relationship with air quality in urban areas [J]. Science of The Total Environment, 2018, 637-638: 1597-1606.
    [15] Takahashi T, Abe S, Igata N. Can Twitter Be an Alternative of Real-World Sensors? [M]. Springer Berlin Heidelberg. 2011: 240-249.
    [16] Zhu C, Leung V C M, Rodrigues J J P C, et al. Social Sensor Cloud: Framework, Greenness, Issues, and Outlook [J]. IEEE Network, 2018, 32(5): 100-105.
    [17] Sakaki T, Okazaki M, Matsuo Y. Tweet Analysis for Real-Time Event Detection and Earthquake Reporting System Development [J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 919-931.
    [18] Slavkovikj V, Verstockt S, Van Hoecke S, et al. Review of wildfire detection using social media [J]. Fire Safety Journal, 2014, 68: 109-118.
    [19] Zaki U H H, Ibrahim R, Halim S A, et al. Sentiflood: Process model for flood disaster sentiment analysis[C]; proceedings of the 2017 IEEE Conference on Big Data and Analytics (ICBDA). 2017:37-42.
    [20] Ballew M, Omoto A, Winter P. Using Web 2.0 and Social Media Technologies to Foster Proenvironmental Action [J]. Sustainability, 2015, 7: 10620-10648.
    [21] Mehmet M I, D''Alessandro S, Pawsey N, et al. The national, regional and city divide: Social media analysis of stakeholders views regarding biological controls. The public reaction to the carp control herpes virus in Australia [J]. Journal of Environmental Management, 2018, 227: 181-188.
    [22] Jost F, Dale A, Schwebel S. How positive is “change” in climate change? A sentiment analysis [J]. Environmental Science Policy, 2019, 96: 27-36.
    [23] Veltri G A, Atanasova D. Climate change on Twitter: Content, media ecology and information sharing behaviour [J]. Public Understanding of Science, 2015, 26(6): 721-737.
    [24] Cody E, Reagan A, Mitchell L, et al. Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll [J/OL]. PLoS One, 2015, 10(8): e0136092[2022-02-26]. https://doi.org/10.1371/journal.pone.0136092.
    [25] Ghermandi A, Sinclair M. Passive crowdsourcing of social media in environmental research: A systematic map [J]. Global Environmental Change, 2019, 55: 36-47.
    [26] Mei S, Li H, Fan J, et al. Inferring air pollution by sniffing social media [J]. 2014: 534-539.
    [27] Hswen Y, Qin Q, Brownstein J S, et al. Feasibility of using social media to monitor outdoor air pollution in London, England [J]. Preventive Medicine, 2019, 121: 86-93.
    [28] Jiang W, Wang Y, Tsou M-H, et al. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI): A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter) [J/OL]. PLoS ONE 10(10): e0141185[2022-02-26]. https://doi.org/10.1371/journal.pone.0141185.
    [29] Chatterjee A, Gupta U, Chinnakotla M K, et al. Understanding Emotions in Text Using Deep Learning and Big Data [J]. Computers in Human Behavior, 2019, 93: 309-317.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

段长宇,胡裕民,赵志杰,李晓亮.基于互联网传播文本的地区环境形象评价方法[J].,2022,(19).

复制
分享
文章指标
  • 点击次数:172
  • 下载次数: 50
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-10
  • 最后修改日期:2022-04-03
  • 录用日期:2022-04-26
  • 在线发布日期: 2022-11-17
文章二维码

联系电话:020-37635126(一、三、五)/83568469(二、四)(查稿)、37674300/82648174(编校)、37635521/82640284(财务)、83549092(传真)

联系地址:广东省广州市先烈中路100号大院60栋3楼302室(510070) 广东省广州市越秀区东风西路207-213星河亚洲金融中心A座8楼(510033)

邮箱:kjgl83568469@126.com kjgl@chinajournal.net.cn

科技管理研究 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!
关闭
关闭