基于PSO-LSTM网络模型的建筑碳排放峰值预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F062.2

基金项目:

国家科技攻关计划


Forecast of Peak Carbon Emissions of buildings Based on PSO-LSTM model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对建筑领域CO2排放进行控制是我国实现“双碳”目标的关键抓手。我国建筑碳排放量由1990年的44 661.73 万吨增长至2019年的20 556.03 万吨,年均增长率达12.01%,具有巨大的碳减排潜力。本文对BP神经网络、LSTM网络和PSO-LSTM模型在碳排放预测方面进行对比选优后,通过训练好的PSO-LSTM模型在低碳、基准、高碳三种情景下,分别对建筑碳排放峰值进行了预测。结果表明,低碳、基准、高碳三种情景的建筑碳排放峰值分别为226 774.56 万吨、239 738.11 万吨和253 379.47 万吨;达峰时间分别为2029年、2032年和2033年。可见,在现有社会发展背景下,仍难在2030年前实现建筑领域的碳达峰,还需采取相应的低碳措施来推进目标的实现。

    Abstract:

    The control of CO2 emissions in the construction sector is essential to achieve the ‘Double Carbon’ target in China. China's carbon emissions in construction sector of operation have increased from 44 661.73 million tons in 1990 to 205 560.03 million tons in 2019, with an average annual growth rate of 12.01%. The potential of construction sector to contribute to the carbon emission reduction target can not be ignored. In this paper, after comparing and selecting BP neural network, LSTM network and PSO-LSTM model for carbon emission prediction, the trained PSO-LSTM model was used to predict the peak carbon emission of buildings under three scenarios of low carbon, baseline and high carbon, respectively. The results show that the peak building carbon emissions for the low-carbon, baseline and high-carbon scenarios are 226 774.56 million tons, 239 738.11 million tons and 253 379.47 million tons, respectively; and the peak time is 2029, 2032 and 2033, respectively. It can be seen that in the existing social development context, it is still difficult to achieve the carbon peak in the building sector by 2030, and corresponding low-carbon measures are needed to promote the achievement of the goal.

    参考文献
    相似文献
    引证文献
引用本文

.基于PSO-LSTM网络模型的建筑碳排放峰值预测[J].,2023,(1).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-05
  • 最后修改日期:2022-07-05
  • 录用日期:2022-07-14
  • 在线发布日期: 2023-03-02
  • 出版日期:
文章二维码

联系电话:020-37635126(一、三、五)/83568469(二、四)(查稿)、37674300/82648174(编校)、37635521/82640284(财务)、83549092(传真)

联系地址:广东省广州市先烈中路100号大院60栋3楼302室(510070) 广东省广州市越秀区东风西路207-213星河亚洲金融中心A座8楼(510033)

邮箱:kjgl83568469@126.com kjgl@chinajournal.net.cn

科技管理研究 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
关闭
关闭